Part Number Hot Search : 
SMS2RE3J TC8227 180515 S2829 ACTR3001 BSL1S GS1AF 1N5258B
Product Description
Full Text Search
 

To Download IRG4BC15UD-S Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  IRG4BC15UD-S irg4bc15ud-l insulated gate bipolar transistor with ultrafast soft recovery diode features e g n-channel c v ces = 600v v ce(on) typ. = 2.02v @v ge = 15v, i c = 7.8a thermal resistance ultrafast copack igbt benefits www.irf.com 1 ? ultrafast: optimized for high frequencies from10 to 30 khz in hard switching  igbt co-packaged with ultra-soft-recovery antiparallel diode  industry standard d 2 pak & to-262 packages  best value for appliance and industrial applications  high noise immune "positive only" gate drive- negative bias gate drive not necessary  for low emi designs- requires little or no snubbing  single package switch for bridge circuit applications  compatible with high voltage gate driver ic's  allows simpler gate drive d 2 pak IRG4BC15UD-S to-262 irg4bc15ud-l parameter max. units v ces collector-to-emitter voltage 600 v i c @ t c = 25c continuous collector current 14 i c @ t c = 100c continuous collector current 7.8 i cm pulsed collector current  42 a i lm clamped inductive load current  42 i f @ t c = 100c diode continuous forward current 4.0 i fm diode maximum forward current 16 v ge gate-to-emitter voltage 20 v p d @ t c = 25c maximum power dissipation 49 p d @ t c = 100c maximum power dissipation 19 t j operating junction and -55 to +150 t stg storage temperature range c soldering temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) absolute maximum ratings w parameter min. typ. max. units r jc junction-to-case - igbt ??? ??? 2.7 r jc junction-to-case - diode ??? ??? 7.0 c/w r cs case-to-sink, flat, greased surface ??? 0.50 ??? r ja junction-to-ambient, typical socket mount  ??? ??? 80 r ja junction-to-ambient (pcb mount, steady state)  ??? ??? 40 wt weight ??? 2 (0.07) ??? g (oz) 06/12/01 pd - 94083a
IRG4BC15UD-S/l parameter min. typ. max. units conditions q g total gate charge (turn-on) ??? 23 35 i c = 7.8a qge gate - emitter charge (turn-on) ??? 4.0 6.0 nc v cc = 400v q gc gate - collector charge (turn-on) ??? 9.6 14 v ge = 15v t d(on) turn-on delay time ??? 17 ??? t j = 25 c t r rise time ??? 20 ??? ns i c = 7.8a, v cc = 480v t d(off) turn-off delay time ??? 160 240 v ge = 15v, r g = 75 ? t f fall time ??? 83 120 energy losses include "tail" and e on turn-on switching loss ??? 0.24 ??? diode reverse recovery. e off turn-off switching loss ??? 0.26 ??? mj e ts total switching loss ??? 0.50 0.63 t d(on) turn-on delay time ??? 16 ??? t j = 150 c, t r rise time ??? 21 ??? ns i c = 7.8a, v cc = 480v t d(off) turn-off delay time ??? 180 ??? v ge = 15v, r g = 75 ? t f fall time ??? 220 ??? energy losses include "tail" and e ts total switching loss ??? 0.76 ??? mj diode reverse recovery. l e internal emitter inductance ??? 7.5 ??? nh measured 5mm from package c ies input capacitance ??? 410 ??? v ge = 0v c oes output capacitance ??? 37 ??? pf v cc = 30v c res reverse transfer capacitance ??? 5.3 ??? ? = 1.0mhz t rr diode reverse recovery time ??? 28 42 ns t j = 25 c ??? 38 57 t j = 125 c i f = 4.0a i rr diode peak reverse recovery current ??? 2.9 5.2 a t j = 25 c ??? 3.7 6.7 t j = 125 c v r = 200v q rr diode reverse recovery charge ??? 40 60 nc t j = 25 c ??? 70 110 t j = 125 c di/dt 200a/s di (rec)m /dt diode peak rate of fall of recovery ??? 280 ??? a/s t j = 25 c during t b ??? 240 ??? t j = 125 c parameter min. typ. max. units conditions v (br)ces collector-to-emitter breakdown voltage  600 ??? ??? vv ge = 0v, i c = 250a ? v (br)ces / ? t j temperature coeff. of breakdown voltage ??? 0.63 ??? v/ cv ge = 0v, i c = 1.0ma v ce(on) collector-to-emitter saturation voltage ??? 2.02 2.4 i c = 7.8a v ge = 15v ??? 2.56 ??? vi c = 14a ??? 2.21 ??? i c = 7.8a, t j = 150 c v ge(th) gate threshold voltage 3.0 ??? 6.0 v ce = v ge , i c = 250a ? v ge(th) / ? t j temperature coeff. of threshold voltage ??? -10 ??? mv/ cv ce = v ge , i c = 250a g fe forward transconductance  4.1 6.2 ??? sv ce = 100v, i c = 7.8a i ces zero gate voltage collector current ??? ??? 250 a v ge = 0v, v ce = 600v ??? ??? 1400 v ge = 0v, v ce = 600v, t j = 150 c v fm diode forward voltage drop ??? 1.5 1.8 v i c = 4.0a ??? 1.4 1.7 i c = 4.0a, t j = 150 c i ges gate-to-emitter leakage current ??? ??? 100 na v ge = 20v switching characteristics @ t j = 25c (unless otherwise specified) electrical characteristics @ t j = 25c (unless otherwise specified)
IRG4BC15UD-S/l fig. 1 - typical load current vs. frequency (load current = i rms of fundamental) fig. 2 - typical output characteristics fig. 3 - typical transfer characteristics 0.1 1 10 100 0.1 1 10 v , collector-to-emitter volta g e (v) i , collector-to-emitter current (a) ce c  v = 15v 20 s pulse width ge  t = 25 c j  t = 150 c j 0.1 1 10 100 5.0 10.0 15.0 20.0 v , gate-to-emitter voltage (v) i , collector-to-emitter current (a) ge c  v = 50v 5 s pulse width cc  t = 150 c j  t = 25 c j 0.1 1 10 100 f , frequency ( khz ) 0.00 2.00 4.00 4.00 6.00 8.00 8.00 10.00 12.00 12.00 0.00 4.00 8.00 12.00 load current ( a ) duty cycle : 50% tj = 125 c tsink = 90 c ta = 55 c gate drive as specified turn-on losses include effects of reverse recovery power dissipation = 11w for heatsink mount power dissipation = 1.8w for typical pcb socket mount 60% of rated voltage ideal diodes
IRG4BC15UD-S/l fig. 6 - maximum effective transient thermal impedance, junction-to-case fig. 5 - typical collector-to-emitter voltage vs. junction temperature fig. 4 - maximum collector current vs. case temperature 0.01 0.1 1 10 0.00001 0.0001 0.001 0.01 0.1 1  notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c  p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thjc 0.01 0.02 0.05 0.10 0.20 d = 0.50  single pulse (thermal response) 25 50 75 100 125 150 0 2 4 6 8 10 12 14 t , case temperature ( c) maximum dc collector current(a) c -60 -40 -20 0 20 40 60 80 100 120 140 t j , junction temperature ( c) 1.0 2.0 3.0 4.0 v ce , collector-to emitter voltage (v) i c = 14a v ge = 15v 80s pulse width i c = 7.8a i c = 3.9a
IRG4BC15UD-S/l fig. 7 - typical capacitance vs. collector-to-emitter voltage fig. 8 - typical gate charge vs. gate-to-emitter voltage fig. 9 - typical switching losses vs. gate resistance fig. 10 - typical switching losses vs. junction temperature 0 10 20 30 40 50 r g , gate resistance ( ? ) 0.42 0.44 0.46 0.48 total switching losses (mj) v cc = 480v v ge = 15v t j = 25 c i c = 7.8a -60 -40 -20 0 20 40 60 80 100 120 140 160 t j , junction temperature ( c) 0.1 1 10 total switching losses (mj) r g = 75 ? v ge = 15v v cc = 480v i c = 14a i c = 7.8a i c = 3.9a 0 5 10 15 20 25 0 4 8 12 16 20 q , total gate char g e (nc) v , gate-to-emitter voltage (v) g ge  v = 400v i = 7.8a cc c 1 10 100 0 200 400 600 800 v , collector-to-emitter voltage (v) c, capacitance (pf) ce  v c c c = = = = 0v, c c c f = 1mhz + c + c c shorted ge ies g e g c , ce res g c oes ce g c  c ies  c oes  c res
IRG4BC15UD-S/l fig. 11 - typical switching losses vs. collector-to-emitter current fig. 12 - turn-off soa 2 4 6 8 10 12 14 16 i c , collector current (a) 0.0 0.4 0.8 1.2 1.6 2.0 total switching losses (mj) r g = 75 ? tj = 150 c v ge = 15v v cc = 480v 0.1 1 10 100 0.0 1.0 2.0 3.0 4.0 5.0 6.0 fm forward volta g e drop - v ( v ) t = 150 c t = 125 c t = 25 c j j j fig. 13 - maximum forward voltage drop vs. instantaneous forward current 1 10 100 1000 v ds , drain-to-source voltage (v) 1 10 100 c, capacitance(pf) v ge = 20v t j = 125 safe operating area
IRG4BC15UD-S/l fig. 16 - typical stored charge vs. di f /dt fig. 17 - typical di (rec)m /dt vs. di f /dt, fig. 14 - typical reverse recovery vs. di f /dt fig. 15 - typical recovery current vs. di f /dt di (rec) m/dt- (a /s) qrr- (nc) irr- ( a) trr- (nc) 20 25 30 35 40 45 50 100 1000 f di /dt - ( a/ s ) i = 8.0a i = 4.0a f f v = 200v t = 125 c t = 25 c r j j 0 2 4 6 8 10 12 14 100 1000 f i = 8.0a i = 4.0a v = 200v t = 125 c t = 25 c r j j di /dt - ( a/ s ) f f 0 40 80 120 160 200 100 1000 f di /dt - ( a/ s ) i = 8.0a i = 4.0a v = 200v t = 125 c t = 25 c r j j f f 100 1000 100 1000 f di /dt - ( a/ s ) a i = 8.0a i = 4.0a v = 200v t = 125 c t = 25 c r j j f f
IRG4BC15UD-S/l same type device as d.u.t. d.u.t. 430f 80% of vce fig. 18a - test circuit for measurement of i lm , e on , e off(diode) , t rr , q rr , i rr , t d(on) , t r , t d(off) , t f t1 ic vce t1 t2 90% ic 10% vce td(off) tf ic 5% ic t1+ 5 s vce ic dt 90% vge +vge eoff = fig. 18b - test waveforms for circuit of fig. 18a, defining e off , t d(off) , t f vce ie dt t2 t1 5% vce ic ipk vcc 10% ic vce t1 t2 dut voltage and current gate voltage d.u.t. +vg 10% +vg 90% ic tr td(on) diode reverse recovery energy tx eon = erec = t4 t3 vd id dt t4 t3 diode recovery w aveforms ic vpk 10% vcc irr 10% irr vcc trr qrr = trr tx id dt fig. 18c - test waveforms for circuit of fig. 18a, defining e on , t d(on) , t r fig. 18d - test waveforms for circuit of fig. 18a, defining e rec , t rr , q rr , i rr vd ic dt vce ic dt ic dt vce ic dt
IRG4BC15UD-S/l v g gate signal device under tes t current d.u.t. voltage in d.u.t. current in d1 t0 t1 t2 d.u.t. v * c 50v l 1000v 6000f 100v figure 19. clamped inductive load test circuit figure 20. pulsed collector current test circuit r l = 480v 4 x i c @25 c 0 - 480v figure 18e. macro waveforms for figure 18a's test circuit
IRG4BC15UD-S/l d 2 pak package outline d 2 pak part marking information 10.16 (.400) re f. 6.47 (.255) 6.18 (.243) 2.61 (.103) 2.32 (.091) 8.89 (.350) r e f. - b - 1.32 (.052) 1.22 (.048) 2.79 (.110) 2.29 (.090) 1.39 (.055) 1.14 (.045) 5.28 (.208) 4.78 (.188) 4.69 (.185) 4.20 (.165) 10.54 (.415) 10.29 (.405) - a - 2 1 3 15.49 (.610) 14.73 (.580) 3x 0.93 (.037) 0.69 (.027) 5.08 (.200) 3x 1.40 (.055) 1.14 (.045) 1.78 (.070) 1.27 (.050) 1.40 (.055) m ax. notes: 1 dimensions after solder dip. 2 dimensioning & tolerancing per ansi y14.5m, 1982. 3 controlling dimension : inch. 4 heatsink & lead dimensions do not include burrs. 0.55 (.022) 0.46 (.018) 0.25 (.010) m b a m minimum recommended footprint 11.43 (.450) 8.89 (.350) 17.78 (.700) 3.81 (.150) 2.08 (.082) 2x lead assignments 1 - ga te 2 - d r ain 3 - s ou rc e 2.54 (.100) 2x part number international rectifier logo date code (yyw w ) yy = year ww = week assembly lot code f530s 9b 1m 9246 a
IRG4BC15UD-S/l to-262 part marking information to-262 package outline
IRG4BC15UD-S/l data and specifications subject to change without notice. this product has been designed and qualified for the industrial market. qualification standards can be found on ir ? s web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 06/01 d 2 pak tape & reel information 3 4 4 trr feed direction 1.85 (.073) 1.65 (.065) 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) trl feed direction 10.90 (.429) 10.70 (.421) 16.10 (.634) 15.90 (.626) 1.75 (.069) 1.25 (.049) 11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601) 4.72 (.136) 4.52 (.178) 24.30 (.957) 23.90 (.941) 0.368 (.0145) 0.342 (.0135) 1.60 (.063) 1.50 (.059) 13.50 (.532) 12.80 (.504) 330.00 (14.173) max. 27.40 (1.079) 23.90 (.941) 60.00 (2.362) min . 30.40 (1.197) max. 26.40 (1.039) 24.40 (.961) notes : 1. comforms to eia-418. 2. controlling dimension: millimeter. 3. dimension measured @ hub. 4. includes flange distortion @ outer edge. notes:  repetitive rating: v ge =20v; pulse width limited by maximum junction temperature.  v cc =80%(v ces ), v ge =20v, l=10h, r g = 75 ?  pulse width 80s; duty factor 0.1%.  pulse width 5.0s, single shot.  this only applies to to-262 package.  this applies to d 2 pak, when mounted on 1" square pcb ( fr-4 or g-10 material ). for recommended footprint and soldering techniques refer to application note #an-994.


▲Up To Search▲   

 
Price & Availability of IRG4BC15UD-S

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X